本站所列毕业设计(论文)资料均属于原创者所有,初衷是为大家在毕业设计(论文)过程中参考和学习交流之用。

毕业设计我帮你

金属枝晶

www.bysj580.com / 2018-09-11
英文翻译
     Metal dendrites are one type of hyper branched fractal structure. Due to their complicated and advanced structural characteristics, metal dendrites have found wide applications in (electro)catalysis, sensors,  uperhydrophobicity, surface-enhanced Raman scattering, and so on. Besides monometallic dendrites such as Cu, Ag, Au, Pt, and Pd, large efforts have also been devoted to the syntheses of bimetallic dendritic nanomaterials, which often exhibit higher catalytic activities toward various (electro) chemical reactions than the respective monometallic nanomaterials.
To date, a number of synthetic strategies have been developed to fabricate bimetallic dendritic structures, including electrodeposition of AuPt, CuCo6 and CuNi8 dendrites, hydrothermal syntheses of PtPb, FeNi3 and AuPt dendrites, and preparation of Au/Pt bimetallic nanodendrites by a seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as a reductant. Galvanic replacement reactions have become another facile approach to the syntheses of a broad range of metal nanomaterials, such as porous gold nanospheres, porous hollow nanorods of AuAg alloys, and nanoporous u/Pt(Pd) core–shell nanostructures.48 This method has also been demonstrated to be a promising strategy to fabricate bimetallic dendritic nanostructures. For instance, PdAg bimetallic dendrites have been obtained via galvanic replacement reactions using sacrificial templates of either a silicon wafer, or Ag dendrites on Cu foil. Heterogeneous AgCu dendrites with a trace amount of uniformly distributed Cu were synthesized by galvanic displacement reaction using an electrodeposited Cu foam substrate. Dendritic Ag/Au films on Si substrates were also synthesized via progressive replacement reactions. Most of these methods for the preparation of bimetallic dendrites involved multiple steps, such as the treatment of oxidizable substrates, the preparation of sacrificial templates, either dendrites or other micro/ nanostructures, and so on. Some of them used strongly corrosive hydrofluoric acid.
 
译文
金属枝晶是一种超分枝的分形结构。由于其复杂的和先进的结构特点,已广泛应用于金属枝晶(电)催化,传感器,疏水性,表面增强拉曼散射,等等。除了单金属枝晶,如铜,银,金,铂,和钯,大量的研究一直致力于双金属树枝状纳米材料的合成方法,其通常表现出对各种(电)化学反应比相应的单金属纳米材料具有更高的氧化活性。
迄今为止,已经开发了许多合成策略来制造双金属树枝状结构,包括电沉积AuPt、CuCo6和CuNi8树突,PtPb、FeNi3和AuPt树突水热合成法,采用种子生长法使用预制的Au纳米枝晶作为种子和抗坏血酸作为还原剂制备的Au /铂双金属纳米枝晶。电镀置换反应已成为另一个简便的方法来广泛的应用于金属纳米材料,例如多孔的金纳米球,AuAg合金的多孔中空纳米棒,纳米多孔铜/铂钯(Pd),核-壳纳米结构。48这种方法也被证明是一种很有前途的战略制造双金属枝状结构。例如,PbAg的双金属树突已经通过使用一个硅晶片上的Cu箔牺牲模板,或银枝晶的电置换反应得到。异构AgCu树突与微量的电偶置换反应,用电沉积泡沫铜衬底上制备了均匀分布的铜。树枝状Ag / Au薄膜在Si衬底上也通过渐进的置换反应合成。大多数这些方法涉及多个步骤的双金属枝晶的制备,如氧化底物的处理,牺牲模板的制备,无论是树突或其它微/纳米结构,等等。其中一些使用强腐蚀性的氢氟酸。
收缩